Constructing SSA the Easy Way

Michael Bebenita
University of California, Irvine

January 25, 2011

Abstract

Static Single Assignment (SSA) form has become ubiquitous in
compilers as an intermediate program representation. The use of SSA
simplifies many compiler optimizations and makes the life of compiler
writers easier. This tutorial presents a technique to convert Java byte-
code programs in and out of SSA form with relative ease.

1 SSA Form Construction

Static Single Assignment (SSA) form [1] has become ubiquitous in compilers
as an intermediate program representation. SSA form is a program transfor-
mation where every variable is assigned exactly once. Its use greatly simplifies
the way we reason about programs.

1.1 Prerequisites

You should have a good understanding of control flow graphs (CFGs), you
should know what the following terms mean: basic block, successor, pre-
decessor, join block, dominator, immediate dominator, reverse post-order
traversal. If you do not go to Wikipedia and read about them. Also, you
should be somewhats familiar with Java bytecodes. The structure of this
tutorial is as follows:

1. We will represent program states using State Vectors, this is a general
technique that can be used in many compiler dataflow algorithms.

2. We will perform Abstract Interpretation on SSA State Vectors in order
to construct SSA form for each individual basic block in a control flow
graph.

3. We will link the SSA form we’ve constructed for each individual block
into a larger SSA control flow graph.

4. We will briefly discuss the dificulties when converting back from SSA
form.

1.2 State Vectors

At each program point p we define the program’s state at that point as
sp, where s, is the state vector (sp : l1,l2,.... 0 | k1, k2, ..., kn). The Java
bytecode position s,. followed by a list of n local (l4,ls,...,1,) and m stack
(k1, k2, ..., km) SSA values. For simplicity we make no distinction between
stack and local values and simply represent the frame state vector as a list
of n SSA values (Spe : V1,02, ..., Up).

1.2.1 SSA Values

An SSA value is the name of a variable (value) definition. It may be a
constant, a parameter, or a function of other SSA values. At each program
location, a state vector indicates which SSA values are located in which local
variables or stack slots. Using abstract interpretation, SSA state vectors
can be mutated to reflect the flow of data through a sequence of bytecode
operations. More formally, each bytecode operation has a function of the form
fop(8p) = (s}, v) that returns s;, a mutated copy of the input program state
sp and the SSA value it produced (v). The listing in Figure 1 shows three
example bytecode operation functions that mutate state vectors: LOAD_X
pushes the zt* local variable slot on the stack, STORE_X stores the top of
the stack in the x*" local variable slot, and ADD creates an add() SSA value
of the top two SSA values on the stack and pushes it back onto the stack.
One aspect worth noting is that stack load/store operations are eliminated
during SSA form construction as a result of the implicit copy propagation
that occurs during abstract interpretation.

Operation Function

LOAD_X (Spe t ooy Ugy o) = (Spetl *eeey Uy oo | V)
STORE_X (Spet ooy Ugy oo | V) = (Spest ooy V,200)
ADD (Spe: oo | A,B) = (Spes1 ¢ ... | add(A,B))

Figure 1: Three examples of Java bytecodes that operate on SSA state vec-
tors.

PC Operation State
Entry State : (0: vg, vp, v¢)

ILOAD.O 0: vg,Vp, Ve | Va)
ILOAD_1 1:vg,Vp, Ve | Vg, Up)

IADD 2 : Vg, Vp, Ve | add(vg,vp))
ISTORE_2 3 : Vg, U, add(vg, vp))
ICONST 3 (4 :vg,vp,add(vg,vp) | 3)

ILOAD 1 6 : Vg, 3,add(ve, vp) | 3)

ILOAD 2 7:0q,3,add(ve,vp) | 3,add(vg, vp))

IMUL 8 : Vg, 3, add(vg, vp) | mul(3, add(ve,vp)))
9 : v, mul(3, add(vqe, vp)), add(ve, vp))

Exit State : (9:vg,3,add(ve,vp),vq)

© 0 N O O W NN+~ O

(
(
(
E
ISTORE.1 (5: 04,3, add(ve,vp))
(
(
(
ISTORE_1 (

Figure 2: Abstract Interpretation

1.2.2 Example

The abstract interpretation sequence of the following short program (left)
listing and its SSA form counterpart (right) is presented in Figure 2.

c<a+b; o < ag + by;
b« 3; by < 3;
b« bxc; by < by X co;

Figure 2 shows how an SSA state vector is mutated using abstract interpre-
tation by successively applying a sequence of bytecode operation functions.
The bytecode sequence is the equivalent of the above program listing.

1.3 SSA Control Flow Graph

Abstract interpretation allows us to generate SSA form for linear sequences
of program code (or basic blocks). In order to model arbitrary control flow
we must link basic blocks together and merge state vectors at program merge
points (Figure 3). In fact, our algorithm uses abstract interpretation to fill in
the SSA IR (intermediate representation) for each basic block independently.
And then, with the help of SSA Value Forwarding (Section 1.3.1), it joins
basic blocks and inserts ¢ (Phi) functions to merge control flow at program
merge points. Phi functions are of the form:

s =¢(s,s,...) =
8" = A({Spe V1, V25 oy Un), (S 2 U1, Ul oy Uy),) =

8¢ = (8pe 1 B(v1, 01, ...), B(v2, V5, ...), ey @(Vn, Uy, -00))

The function, ¢(v,, v, ...) selects one of the operands depending on where
control flow arrives to the ¢ function from. It is important to note that ¢
functions are applied to state vectors, and thus, the selection of all individual
components must happen atomically with respect to the state vectors. Cycles
may appear between the operands of ¢ functions due to copy propagation
and it is important to consider the ¢ operand selection as though it happens

in parallel.

1.3.1 SSA Value Forwarding

Many optimizations and algorithms need to replace one SSA value with
another. A naive implementation would require that all uses of an SSA
value definition are maintained in an auxiliary Def-Use chain data structure.
Whenever an SSA value is replaced with another, all uses of the original
value are updated to refer to the updated value. Unfortunately, maintaining
Def-Use chains can become cumbersome and inefficient, as it requires that all
uses be updated whenever an SSA value is replaced with another. Instead,
we lazily evaluate each use of an SSA value by following a chain of forward-
ing pointers. Each SSA value has a forwarding pointer. If this pointer is set,
then the SSA value is logically replaced with the value it is being forwarded
to. To do this we use the forwarding function forward(i,j) to replace i with
j (i = 7). This way, whenever an SSA value is replaced by another, the
old SSA value is simply forwarded to the new one by linking the two with a
forwarding pointer.

; l A | Propagate A" to Successors

A' - N A"

\ H
State Merge Points H \4 ’

C

C

B
B
B
't <
T ‘ ----------------
D = :
D

Merge B" with C" and
propagate to Successor

Figure 3: Entry and exit state vectors are merged. Each block’s exit state
is either directly propagated to its successor block, or propagated through a
state vector merge function, namely the ¢ function.

Therefore, the identity of an SSA value at a Use site is defined by the
value resolution function:

if not forwarded

resolve(x) = {x

resolve(x. forward) otherwise

The chain of forwarding pointers must be followed whenever an instruction
is accessed. The current “real” value of an SSA value 7 is given only by
resolve(i).

The resolution function also performs pointer swizzling! in order to limit
the value forwarding chain to at most one link. If a value i is forwarded to
j (i —>), and j is then forwarded to k (j — k), then whenever i is resolved
it is automatically forwarded to resolve(i). This effectively caches value
resolution and is possible for the following reasons:

e An SSA value cannot be forwarded to itself (i — ¢). This is to prevent
cycles in the forwarding chain. Although the SSA value graph may
contain cycles, the forwarding chain is always acyclic.

!Pointer swizzling is similar to path compression in the Union-Find data structure.

e If a value 7 is forwarded to j (i — j), then ¢ cannot be forwarded again,
since i is immediately replaced with j (i # resolve(i)). Therefore, there
is no reason to ever invalidate the value resolution cache.

1.4 Basic Block Construction & State Vector Linking

The SSA form construction algorithm (Algorithm 1) operates in three phases:

Phase 1: SSA Value Graph Construction The first phase of the algorithm
constructs an SSA value graph for each of the basic blocks in the CFG using
abstract interpretation. The initial SSA entry state of a basic block is filled
with SSA parameter values. SSA parameter values are placeholder values
representing the incoming values into a basic block. For each bytecode op-
eration the algorithm then constructs SSA values by successively applying
each bytecode’s operation function. The application of the operation func-
tion mutates the state vector and creates a new SSA value which is then
added to a sequence of SSA instructions/values in the basic block. The SSA
exit state for the basic block is recorded after the application of the last byte-
code operation function. This phase of the algorithm constructs an acyclic
SSA graph for each basic block rooted in SSA parameter values.

Phase 2: Basic Block Linking € State Forwarding ¥ be B : b.exitState =~
successor(b).entryState, where B is the set of basic blocks in a CFG. This
means that for all blocks, the exitState can be propagated to all succes-
sor blocks. This is done by forwarding the entry state of each block to its
predecessor’s exit state (we define state forwarding as: forward(ps,p.) =
forward(vy,v}), ..., forward(v,, vl,)).

Each basic block may have one or more predecessor blocks. If a block
has only one predecessor, its entry state is forwarded to the exit state of the
predecessor block. If a block has two or more predecessors, its entry state
is forwarded to a ¢ function merging the exit states of predecessor blocks.
At this point, the block’s entry state, which used to contain SSA parameter
values, is forwarded and swizzled away to the forwarded values. Since the ¢
function is distributed across each component of the state vector, we avoid
the insertion of ¢ functions whenever we notice that it is merging equal
SSA values, and simply forward to the operand instead. This optimization
is sensitive to the order in which we link basic blocks. The pseudocode in
Algorithm 1 purposely fails to indicate a block linking order because it is not
necessary for correctness. However, if we process blocks in reverse postorder,
we can drastically reduce the number of inserted ¢ functions. This is because

Algorithm 1: Static SSA Form Construction

input : A CFG of basic blocks that are linked and contain Java bytecode
operations but are not in SSA form yet

- Phase 1: Perform abstract interpretation on all basic blocks and fill each
block with SSA instructions/values.

for block € blocks do

state < createStateVector();
block.entryState < state;

for bytecode € block.bytecodes do

(Statev U) < fbytecode(State);
block.appendInstruction(v);

| block.exitState « state;

< Phase 2: Link basic block by forwarding entry states to predecessor’s exit
states.

for block € blocks do

if isUniqueSuccessor(block) then
| forward(block.entryState, pred ExitState(block));

else
| forward(block.entryState, (pred ExitStates(block));

< Phase 3: Optimize ¢ instructions.

we can guarantee that a block’s predecessor blocks have already been linked
and their entry states forwarded, and thus we don’t need to worry about
inserting ¢ functions for SSA parameter values that may have propagated
through predecessor blocks. This phase completes SSA construction.

Phase 3: ¢ Function Elimination The third and last phase of the algo-
rithm simplifies the SSA graph by iteratively eliminating ¢ functions. Func-
tions of the form vy = ¢(vy, 01, ...,v1) are forwarded to their common operand
(v = v1). Functions of the form vy = ¢(vq,vs,...,v9) are forwarded to their
incoming operand (ve - v1). This is a fixed-point algorithm which eliminates
¢ functions until no further progress is made.

2 SSA Deconstruction

Converting out of SSA form requires the introduction of move instructions
into the predecessor blocks of blocks containing ¢ instructions (Figure 4). At
this point, variables are reintroduced into the program for every SSA value.
The semantics of ¢ instructions require that they execute in parallel. There-
fore the move instructions that are pushed into predecessor blocks must all
execute in parallel as well. Because of SSA value dependencies, a topological
ordering must be computed to ensure the parallel evaluation semantics of
moves are preserved when executing them in a sequential way. Cyclic de-
pendencies may also occur after copy propagation, to break cycles we must
introduce temporary variables, or use exchange operations (Figure 5).

Moves are Pushed Into
Predecessor Blocks

3:PHI(1,2)
4: PHI (3,2)

Figure 4: Eliminating ¢ instructions by introducing moves in predecessor
blocks. The semantics of ¢ instructions require that they are all executed in
parallel, therefore dependencies must be respected and a topological order
must be computed. Here, in the left predecessor block we must make sure
the variable 3 is not overwritten before it’s assigned to variable 4.

‘ " ‘_>‘ ; ‘_>‘ . ‘

N e

(3)e—4) (T)—»(2)

Figure 5: Cyclic dependencies and topological sorting of parallel moves. A
graph of moves (left), where each edge represents a move instruction. Each
node can have at most one incoming edge, and many outgoing edges. A
topological ordering is computed (right) where the cycle is also broken by
introducing a temporary variable, T.

2.1 Ceritical Edges

A critical edges in a control flow graph connects a block with multiple suc-
cessors to a block with multiple predecessors, as shown in Figure 6. In
such cases, eliminating ¢ instructions by pushing moves up into a prede-
cessor block, across a critical edge, causes side effects. Alternate control
flow paths leaving the predecessor block also experience the assignments and
they shouldn’t. The solution is to split critical edges by inserting empty basic
blocks. This provides a safe place for assignments to be placed.

R e L R (s
q q i
EE ‘ ‘
E

Figure 6: Critical edge splitting, an empty block is inserted in order to
provide a safe place for the insertion of moves.

References

[1] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control de-

pendence graph. ACM Transactions on Programming Languages and
Systems, 13(4):451-490, 1991.

10

