
1 of 21

Faster Implementation of Java
Exceptions (please!)

R. Nigel Horspool
nigelh@csr.uvic.ca

University of Victoria, Canada

2 of 21

Premise

Exceptions with the try-catch control construct
are useful for much more than recovering from
a run-time error.

Typical uses would seem to be ...
• better debugging messages for Java code in development,

• returning error results (e.g. InputFileFormatError),

• as a wrapper for someone else’s code, trapping exceptions
at a place where they are understood.

But why not also use exceptions as a
standard construct? There are other possible
uses.

3 of 21

Use of Exceptions for Loop Exit?
• Earlier this year I presented a talk on automatically

transforming loops to use exceptions to exit. For example,

Node n = firstElement;
int length = 0;

while(n != null) {
n = n.nextElement;
length++;

}

Original version
of loop

4 of 21

1. Use of Exceptions for Loop Exit?
• Earlier this year I presented a talk on automatically

transforming loops to use exceptions to exit. For example,

and why not?
(When the list is long enough, this code is faster than the
conventional loop interpretively executed by the JVM. If
compiled, there should be no difference.)

Node n = firstElement;
int length = 0;
try {

for(; ;) {
n = n.nextElement;
length++;

}
}
catch(NullPointerException e) {
}

Transformed
version of loop

5 of 21

2. Exiting from Deep Recursion

• Backtracking search algorithms

e.g., when we are many levels deep and have found the
desired answer, execute this to return to the top level:

throw new SolutionFound(...);

6 of 21

2. Exiting from Deep Recursion

• Backtracking search algorithms

e.g., when we are many levels deep and have found the
desired answer, execute this to return to the top level:

throw new SolutionFound(...);

• Recovery from syntax errors in recursive descent parsing

e.g., return from expression level parsing to statement
level parsing by executing this:

throw new BadExpression("missing operator");

7 of 21

3. As a Switch on Class Type?
• This may pervert the purpose of exceptions but the throw-

catch construct can be used as as a switch on class type.
if (n instanceof BinaryNode) {

...
} else if (n instanceof EmptyNode) {

...
} else if (n instanceof LeafNode) {

...
}

becomes:
try {

throw n;
} catch(BinaryNode b) {

...
} catch(EmptyNode e) {

...
} catch(LeafNode l) {

...
}

8 of 21

4. Other Uses of Exceptions?
Here is a common idiom

It is interesting because the cast implicitly re-performs an
instanceof test.
Maybe rewrite as this?

and probably there are other uses for exceptions.

if (a instanceof ClassB) {
b = (ClassB)a;

}

try {
b = (ClassB)a;

}
catch(ClassCastException e) {
}

9 of 21

Why Don’t We Use Exceptions in
These Ways?

Apart from the belief that exceptions are only
provided for handling errors, there is also the
difficulty that an exception takes a very long
time to process.

(The example loop to find the length of a list requires more
than 800,000 iterations to pay off with Sun’s JVM, even
though the number of bytecode instructions in the loop is
reduced from 6 to 5.)

10 of 21

How are Java Exceptions
Implemented in the JVM?
• Each class file contains an Exception Table.

from to target type

22 46 89 NullPointerException

37 42 104 IOException

11 of 21

How are Java Exceptions
Implemented in the JVM?
• Each class file contains an Exception Table.

• An exception or a throw statement causes an Exception
object to be pushed; the Exception Table is searched for
entries applicable to the bytecode line number; the first of
the applicable entries with a ‘matching’ type is used;
control is transferred to the target line in the bytecode.

• If no matching entry is found, the current frame is exited
and the search repeated in the caller’s Exception Table.

from to target type

22 46 89 NullPointerException

37 42 104 IOException

12 of 21

And How The Time Is Spent ...

Note: We timed the simplest possible Exception Table; the
search time will increase with size and nesting of trys.

Exception
Table Search

Creation of
Exception Object

Unwinding
Stack, etc.

Same Level Handler

Depth 100

(+fillInStackTrace)

(approx 7ms total time

(approx 32ms)

on 200MHz Pentium)

13 of 21

Exception Object Creation – the
fillInStackTrace Method

Most of the time is spent performing one
routine – fillInStackTrace (a native method).

The time increases linearly with depth.

What can we do? Possibilities include:
1. Provide a production mode of execution where Exception

objects are created without their stack trace fields being
initialized.

2. Create the stack trace only if it might be used.
Observations show that printStackTrace is hardly ever
called for user-defined exception types (see next slide).

14 of 21

Exception Object Creation

About 50% of catch blocks do not use the
Exception object for a Java run-time error.

Can we avoid creating the Exception object?

Java Errors User-Defined

object
used?

trace
printed?

object
used?

trace
printed?

CaffeineMark 3.0 0/7 – 0/0 –

JFlex 1.3 5/14 2/14 2/5 0/5

RabbIT WebProxy 2.0 112/194 60/194 9/9 0/9

IceMail 2.5.1 55/114 20/114 3/3 0/3

JavaCC 90/189 7/189 128/129 0/129

15 of 21

Suppression of Exception Object
Creation

try {
...

}
catch(ExceptionType e) {

...
// Does e get referenced?
// Could e.printStackTrace() get called?
...

}

After simple analysis, we can annotate the Exception Table
with flags to indicate the need for an Exception object and
to indicate the need for a stack trace.

16 of 21

Reducing Exception Object Overhead
for User-Defined Exceptions

The user can eliminate almost all the cost in
one of two ways ...

1. Overriding the fillInStackTrace method

public class MyExceptionType extends Exception {
...
public Throwable fillInStackTrace() {

return null;
}

}

17 of 21

Reducing Exception Object Overhead
for User-Defined Exceptions, cont’d

2. Recycling the same Exception object(s)

E.g., for the recursive descent parser example ...

static MyExceptionType e =
new MyExceptionType("syntax error",0);

...
if (some condition) {

e.setMessage("parenthesis expected",lineNumber);
throw e;

}

18 of 21

Faster Search of Exception Tables

The JVM search is a linear search, using the
instanceOf test to compare exception
types.

• In principle, each class’s Exception Table could be
implemented as a perfect hash table, so that

target = searchTable(location, exceptionType);
returns the result in constant time.

• Or, for each try range, we could precompute a table
which can be indexed by the exception type ...

target = lookupTable[exceptionType];
and we also provide a data structure to map locations to
table pointers.

19 of 21

Faster Search of Exception Tables,
cont’d
• Current implementations of Java exceptions perform no

work when entering/exiting each try block.

We can push a pointer to a look-up table on entry to a try
block and pop it on exit. Then use the tables like this ...

target = top->lookupTable[exceptionType];
This may be unpopular because it violates the ‘user pay’
principle.

• There is implicitly a stack of Exception Tables. The stack
will grow very deep only in the presence of recursion. If this
is a problem and if direct lookup tables are not
implemented, then searching the stack of tables can be
improved by using a cache.

20 of 21

Final Thought

There is a pervasive philosophy, both by the
language designers and by the implementers,
that exceptions are provided to handle only
errors and that errors are rare events.
Therefore the efficiency of implementation is
unimportant.

This attitude ought to be overturned.
Exceptions are simply too useful.

21 of 21

A Closing Quote

“Speed is not an issue here, since we are
already fu.”

(A comment in Sun’s JVM exception handling
code.)

