
Fun Ideas and Thoughts

PLDI 2009

Decentralized Garbage Collection

Eric Hennigan
eric.hennigan@uci.edu

University of California, Irvine

May 15, 2009

1 Motivation

What techniques are useful for scaling the heap size of garbage collected lan-
guages to hundreds of Gigabytes? Are the same techniques appropriate for dis-
tributed systems (the most likely architecture for for hundred Gigabyte heaps)?
We propose a method of garbage collection that uses inter-object references to
compute a graph centrality measure that determines when each object is safe
for collection.

2 System Design

The critical model of decentralized garbage collection is not to use the conven-
tional approach of solving graph reachability using a global monitor, but to gift
each node with the ability to identify itself as being disconnected from root
nodes. In this approach we think of each object as being its own process, with
the ability to discover, for itself, when it should be reclaimed. To accomplish
this we use distributed calculation of graph centrality.

We consider two types of nodes which need garbage collection: (1) root
nodes which appear on the call stack, and become collected automatically when
stack frames are popped, and (2) heap nodes which are allocated in the garbage
collected heap. Only those heap nodes which are reachable from a root node
are considered necessary for program execution, all other heap nodes can be
collected.

Each object in the system has two tags, self worth Ws and computed worth
Wc, that keep track of its connectedness to a root node. Root nodes are initial-
ized with both self worth and computed worth set to a large number (MAXINT),
and do not update their computed-worth. Heap nodes are initialized with self
worth set to 0 and computed worth set to a large number (MAXINT). After cre-
ation, an object participates in a centrality calculation that determines their
reachability from a root node.

Objects will send messages to each other, continuously updating their com-
puted worth using a centrality measure. When the computed worth of a node

1



dips below a threshold it will select itself as a candidate for collection. The com-
puted worth of an object i is determined by a function of the computed worth
of neighboring nodes and its own self worth. An example of such a function is:

Wc(i) =
Ws(i) +

∑
j∈neighbors(i) Wc(j)

1 + degree(i)
(1)

Together with the initial conditions, the important properties of this measure
are twofold:

1. Root nodes never wish to collect themselves, because their computed
worth is set to a large number, and is never updated.

2. Heap nodes, which have a self-worth of 0, maintain their computed worth
solely as a result of their reachability from root nodes.

To demonstrate when objects select themselves as canditates for collection,
consider a subgraph of heap nodes which becomes disconnected from the root.
These nodes will continuously update their computed worth, but, because every
node in the heap has a self worth of 0, the computed worth will begin to decay.
After some period of time, this value will dip below a threshold value, at which
point it is safe for the object (and every node in its subgraph) to be collected.
The decay rate, which determines the speed with which objects are collected, is
dependant on both the connectivity of nodes within the disconnected subgraph,
and the threshold value.

3 Value of the Idea

We recognize that distributed calculations in the real world result in much net-
work overhead. We think that our system can minimize this by processing heap
nodes using an event queue. We believe it is possible to construct the system
in such a way that the distributed calculation can be performed in a separate
garbage collection thread. The tags associated with each object can be placed
in memory locations disjoint from the objects themselves, and the distributed
calculation is robust with respect to spontaneous additions and removals of both
edges and nodes in the graph.

The primary implementation difficulty is to ensure that at least one node
from every disconnected subgraph is in the event queue, otherwise nodes of that
subgraph will stop participating in the distributed calculation and never will
dip below the collection threshold. The distinct advantage to our system is that
it can act completely independently of all other calculations, there is no need
to stop the world, or lock objects to perform a reachability analysis.

2


