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Abstract—We review, in detail, the previous work on cascade
failure, and investigate the possibilities and constraints of cre-
ating decentralized solution to the cascade failure problem. We
demonstrate a few heuristics for intentional removal strategies
that attempt to lighten the load on surviving nodes and maximize
the size of the largest connected component after a cascade event.
It is shown, via simulation, that the heuristics suggested actually
do more harm than good. An intuitive proof of the limitation
of algorithms using local-only knowledge is given that explains
why developing a decentralized solution might be considered
impossible.

I. INTRODUCTION

Physicists have long noticed “cascading events” in physical
processes such as phase transitions, sand avalanches, and
nuclear decay. Such phenomena has shown its utility and
has been explicitly used in the design of sensitive detectors,
including photomultiplier tubes and Geiger counters. Systems
engineers, by contrast, paid relatively little attention to cascad-
ing phenomena until civil engineering projects became both
large enough that interdependence among system parts and
functionality was unavoidable, and automated enough that
the natural time scale of the system was so quick it pre-
vented human intervention. A particularly notorious example
of cascade failure was the Great Northeast Blackout of 1965,
which served as a wake-up call for most of society, and
civil engineers in particular. Since that time, other systems
have shown similar behavior, including the Internet, which
has repeatedly suffered congestion collapse since 1986 [1].
Fortunately, such outages have been primarily the result of
accident or poor maintenance, and not of intentionally mali-
cious activity. Nevertheless, we should consider ourselves as
having been alerted to both our complete social dependence on
such strangely fragile systems, and the security implications
thereof.

The phenomenon of cascade failure has now been recog-
nized in a wide variety of systems, including biological ecosys-
tems [2], biochemical pathways [3], and financial markets [4].
Indeed, any system that can be modeled using an interdepen-
dence graph with limited capacity of either nodes or edges to
carry flow of some resource such as information, electrons,
or energy, will be exhibit the cascade failure phenomenon.
Despite this generality, the problem has not been particularly
well studied, even though the networks which can suffer such
failure are an essential part of modern society [5]. Because
these systems (power, communications, transportation, finan-
cial) which support our modern lifestyle are constructed under
economic considerations, engineers naturally find great utility
in preferential linking, as it avoids the high cost of adding
edges to an existing network. This promotes the creation of

inhomogeneous scale-free networks [6]. Though most of these
systems are explicitly designed for error tolerance and are
well known for reliability when subjected to random outages,
they are also notorious for experiencing widespread outage or
congestion failure as a result of the removal of only a few
critical nodes. These are typically the nodes which play an
important role in ensuring network connectivity [5] [7].

II. SUMMARIES OF PREVIOUS WORK

Usually, the removal or failure of nodes or edges, either
by random breakdown or intentional attack, within a stressed
distributed system, will trigger a subsequent redistribution of
stress within the system [5]. If the redistribution results in
further outages by overloading the remaining nodes or edges,
then a chain of such outages called a cascade failure is said
to occur. It is important to note that in real-world systems,
many breakdown failures in components are not statistically
independent, but fall under the systems engineering terms
common cause failure or common mode failure. For example,
packet routers on computer networks are only manufactured
and programmed by only a few companies, which share both
architecture and algorithms. This can lead to potential systemic
faults [8], which would share a root cause, a feature not
present in fully heterogeneous systems. The term cascade
failure does not apply in this case, because it is reserved
for models covering independent failure. The term exclusively
covers those faults which are spread through the system
interdependency, rather than widespread faults which share a
single cause. The differentiation of cascade failure from other
dependent failures was first tabulated (Table. I) by the U.K.
Atomic Energy Commission [9].

Because our society, and the systems that support it, are
geographically distributed in a non-random fashion, outage of
heavily loaded nodes is proportionally higher, indicating that
an attack model with the desire to cause as much disruption
as possible, would selectively target the loaded nodes of a
network. Unfortunately, the consequences of such an outage
will be more severe if it is able to spread, via cascade, over
the entire network [5].

A. The Watts Model [7]

Watts pointed out that cascading events are extremely dif-
ficult to predict, even when the properties of the individual
components are well understood. The same systems that
routinely display great stability in the presence of continual
small failures and shocks by incorporating fault-tolerance and
redundancy into their design, also exhibit cascading failure as a
direct result of their load-balancing and recovery mechanisms.
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TABLE I
DIFFERENTIATION OF CASCADE FAILURE FROM OTHER DEPENDENT

FAILURES.

Dependent Failure

The likelihood of a set of events, the prob-
ability of which cannot be expressed as a
simple product of the unconditional failure
probabilities of the individual events.

Common Cause
Failure

The type of failure which occurs in redundant
components, in which a single common cause
simultaneously (or near simultaneously) leads
to failures in different types of system compo-
nents.

Common
Mode

Failure

The type of failure which occurs when multi-
ple components fail in the same manner.

Cascade
Failure

Dependant failures which do not share a com-
mon cause, meaning they do not affect redun-
dant components.

Notably: The definition of “dependent failures” includes all definitions
of failures that are not independent. This definition implies that an
independent failure in a group of events is expressible as a simple product
of the conditional probabilities of failures of a single event.

Cascades can therefore be regarded as a specific manifestation
of the robust yet fragile nature1 of many complex systems [11]:
a system may appear stable for long periods of time and
withstand many external shocks (robust), then suddenly and
inexplicably exhibit a large cascade (fragile). From this, Watts
also identifies a couple of very important qualitative observa-
tions about global cascades:
• They can be triggered by exogenous events (shocks) that

are very small relative to the system size.
• They occur rarely relative to the total number of shocks

that the system receives, and may be triggered by shocks
that are a priori indistinguishable from shocks that do
not.

Watts’ model is motivated by noticing that in all social
phenomena exhibiting cascade behavior, it arises as a direct
result of individual decision makers having an incentive to
pay attention to the decisions of others. Networks where an
individuals’ state can be given as an explicit function over
neighboring states, immediately suggests the use of a model
for a class of problems known generically as binary decisions
with externalities [12].

He uses a model where each node maintains a binary state,
either 0 or 1, and a function for switching state that is based
entirely on the state of its immediate neighbors. The dynamics
of cascade are modeled by initializing the network in an all-off
state, and then perturbing it by turning on a very small fraction
of nodes. The network then evolves in an asynchronous fashion
according to a threshold function, that causes a node to turn
on if a sufficient fraction of its neighbors are on.

He compares this model with several others (percolation
models of disease-spreading, random-field Ising models, boot-
strap percolation, majority voting, self-organized criticality,
etc..) and notes the introduction of certain features (not all
present in the other models), that are essential to the dynamics
of cascades — local dependencies, fractional thresholds, and
heterogeneity. He also observes that network heterogeneity

1This robust yet fragile property was first observed of heterogeneous
networks in Ref. [10]

and threshold function heterogeneity are not equivalent and
considers them separately.

His model uses random graphs as a first approximation,
despite the fact that they are not representative of real-world
networks. Like the other researchers discussed later, he focuses
on two quantities: (i) the probability that a global cascade will
be triggered by a single node (or small seed of nodes); and
(ii) the expected size of a global cascade once it is triggered.
In analyzing his model, Watts identifies as vulnerable those
nodes which are on the verge of switching state because of
the edges they share with a dynamically expanding initial seed.
This situation has parallels to the social dynamics of early and
late adopters, in that the successful adoption of an innovation
is dependent on both the number of early adopters and how
they are connected to each other.

He conjectures that the required condition for a global
cascade, in his model, is that the subnetwork of vulnerable
nodes must percolate throughout the network as a whole.
This condition is formalized, and marks the transition between
two phases: (1) that vulnerable clusters in the network are
small and isolated such that they are unable to generate the
momentum required for a cascade; and (2) that the typical
size of vulnerable clusters is effectively infinite, implying that
a random initial trigger will hit a vulnerable cluster capable of
percolating throughout the network as a whole. The insight of
identifying the vulnerability of an entire network component as
the probability of hitting any node within a percolating cluster
is aptly demonstrated in simulations of random networks, and
supports the observation that though cascade failures occur
rarely, they are very large when they do.

B. The Motter-Lai Model [5]

Motter and Lai were the first to address the issue of
cascade failure in distributed networks. The network model
that they introduced in their Rapid Communication, Cascade-
based attacks on complex networks, is generally applicable
to realistic networks such as the Internet and power grids,
yet simple enough to support tractable analysis. It consists of
several key elements:
• The traffic is simulated by the exchange of one unit of

the relevant quantity (information, energy, etc.) between
every pair of nodes along the shortest-hop path connect-
ing them. The load placed on a node is then equivalent
to total number of shortest-hop paths passing through the
node.

• The capacity of a node is defined as the maximum load
that the node can handle. Because real-world networks
are severely limited by construction costs, the capacity
Cj of node j is assumed to be linearly proportional to its
initial load Lj ,

Cj = (1 + α)Lj , j = 1, 2, ...|N |, (1)

where the constant α ≥ 0 is the tolerance parameter, and
|N | is the initial number of nodes.

• Cascade Failure of the network is a result of re-balancing
efforts of the network when a node fails. When all nodes
are operational, the network operates steadily as long
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as α ≥ 0. But the removal of a node will cause a
redistribution of the shortest paths. This will generally
increase the load at some of nodes. If the load increase
exceeds the capacity of any node it will fail, triggering
a new redistribution, and possible subsequent failures.
Eventually, the cascade will stabilize, when all remaining
nodes can handle their load. The resulting network is typi-
cally partitioned into a number of connected components.

• The network is a scale-free network, which follows a
power-law distribution in node degree. The probability P
that a randomly chosen node has degree κ is given by

P (k) ∼ κ−γ , (2)

where γ is the scaling exponent.
• The damage caused by a cascade failure is quantified by

the relative size G of the largest connected component,

G = |N ′|/|N |, (3)

where |N | and |N ′| are, respectively, the number of nodes
in the largest component before and after the cascade.

Using this model, Motter and Lai observe that G remains
close to unity in the case of random breakdowns, but is
significantly reduced under attacks targeting nodes of highest
load. For example: even when every node has capacity twice
that of initial load (α = 1), the size of the largest component
is reduced by more than 20%. For smaller values of α the
damage is considerably greater.

Experimental simulations were also carried out on homo-
geneous networks (those with a more uniform distribution of
node degree), does not experience cascading failure due to
targeted removal or random breakdown for α as small as 0.05.
From this they conclude that homogeneous networks are more
robust against attacks.

C. Defense by Intentional Removal of Nodes [13]

Building upon the Motter-Lai model and previous results,
Motter continued work on an investigation of the possible
strategies of defense to prevent the cascade from propagating
through the entire network. He begins by noticing that a
cascade can be divided into two events:

I The initial attack where a small fraction of nodes is
removed either by intention or random breakdown.

II The propagation of the cascade, where another fraction
of nodes is removed by subsequent overload failures.

The method of defense rests in the strategic removal of
nodes after (I) but before (II). This is a valid assumption,
because the time scale involved during a cascade failure
is typically much shorter than the time scale at which the
network grows. Intentionally removing nodes via a shut-down
procedure is feasible, but adding nodes or edges during a
cascade event is not. Though the removal of nodes can result
in an even smaller final connected component, it is possible
to reduce the magnitude of the cascade by choosing carefully
which nodes to remove.

The model is slightly improved by giving a new definition
of inter-node communication, and adding an explicit reference
to the evolution of the network in time.

• The traffic is simulated by sending one unit of flow from
node i to node j, for every ordered pair of nodes (i, j)
belonging to the same connected component. If there is
more than one shortest path connecting nodes i and j
then the traffic is divided evenly at each branching point.

• The load on a node k is then given by

Lk =
∑
i,j

L
(i,j)
k , (4)

where L(i,j)
k is the contribution of the ordered pair (i, j)

to the load on node k.
• The cascade simulation is a step-wise process, starting

with the network N = N (0) at time 0, with no nodes
overloaded. The initial attack is performed at time 1, by
removing a fraction p of nodes from N (0) to form the
network N (1). The redistribution of flow is calculated
and all loads Lk(1) are updated. Any nodes where load
exceeds capacity, are considered to be overloaded and are
simultaneously removed to form the resulting network
N (2). Redistribution proceeds in this manner, until the
cascade stops at time t′ by satisfying the relation

Lk(t′) ≤ Ck ∀k ∈ N (t′). (5)

• The generated load of a node i is given by

Lgi =
∑
j

(Dij + 1) = (D̄i + 1)(|Ni| − 1) , (6)

where D̄i is the average shortest path length from node
i to all others within the connected component Ni con-
taining node i.

By observing that (1) nodes whose load Li is much larger
than Lgi contribute much more to handling than to generating
load, and are therefore the most important nodes for maintain-
ing connectivity, and that (2) the removal of any node i will
increase the load on the remaining nodes by at least Li−2Lgi ,
(unless it partitions the network into more than one connected
component), Motter identifies a rationale for attack strategies
based on the removal of highly loaded nodes. By contrast,
nodes whose load Li is smaller than Lgi generate more load
than they handle, and removing them can dramatically reduced
the size of the cascade. This results in the identification of four
strategies for a defense based on intentional removal (IR).

1. Nodes with smallest ∆i ≡ Li − Lgi are removed first.
2. Nodes with smallest closeness centrality D̄−1

i are re-
moved first.

3. Nodes with smallest load Li are removed first.
4. Nodes with smallest degree κi are removed first.
For the intentional removal defense to be effective, removals

must satisfy two conditions:
• The load on the remaining nodes must be reduced.
• The fragmentation caused by the IRs must be smaller

than that caused by the cascade itself.
Motter only considered strategy (1) for analysis, and demon-

strated that it satisfies both of the conditions for an effec-
tive defense. The other strategies performed similarly under
simulation due to the very strong correlation (in scale-free
networks) of the parameters on which the strategies are based.
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From this he concludes, that while the removal of the most
central nodes of N (0) can trigger a cascade, the removal
of the least central nodes of N (1) can drastically reduce
the size of the cascade. A numerical simulation using all
four strategies showed approximately equal effectiveness at
stopping a cascade, and demonstrates that IRs form marked
improvement over no defense at all.

D. A Proactive Defense [14]

It was noticed that the IR defense is somewhat less than
ideal, both because it purposefully removes nodes and be-
cause it focuses on the minimization of damage rather than
prevention. Schäfer, Scholz, and Greiner proposed a proactive
measure to significantly reduce the chance of an overload
avalanche and to limit its size in the case of occurrence. Their
approach is based on load weights, and focuses on those flow
paths with the smallest load-based length. Routing traffic in
this manner turns a heterogeneous load distribution into a more
homogeneous one, reduces the need to shut off nodes to stop
a cascade, and simultaneously lowers the investment costs in
network capacity layout.

Continuing the use of the Motter-Lai model, they notice that
the load on a node k is a result of summing all shortest-hop
paths traversing through that node. A contingency analysis is
done with the hypothetical removal of a single failed node. For
each node in the network, a redistributed load is calculated
as if that node had failed. The resulting networks provide
information about the minimum capacity that each node must
be able to carry for the network as a whole to survive a one-
node failure without triggering cascade. The capacity that a
node i must have in order that the network survive any one-
node failure is found by taking the maximum over all networks
with single-node removal,

Ci = max
j∈Ni

Li(Ni\j) (7)

where Li(Ni\j) is the load on node i in the connected
component containing node i but with node j removed.

Load-based shortest paths, which tend to avoid the most-
loaded nodes, are also considered, but the calculation proves to
be much trickier, due to the introduction of a recursive relation
between loads and paths. Using an iterative technique that
assigns a load-based weight to each node, a stable distribution
of load-based shortest paths can be discovered for single-
node removals from the initial network. The resulting node
capacities for preventing cascade are still given by Eqn. 7. It
is noticed that those nodes which had a high hop-based load
experience a significant decrease in load upon application of
load-dependent weights, while nodes which carried a small
load acquire a larger one. The resulting load-dependent routing
is found to turn a heterogeneously loaded network into a
more homogeneous one. The same technique can be used to
discover the required capacity investments for two or more
node removals. The required infrastructural investment for
hop-based distribution is greater than that for the load-based
one.

E. Assessment

The Motter-Lai model of network traffic is somewhat un-
realistic in that it specifies every node to communicate one
unit of flow with every other node. Though this has the
advantage of being a highly regular and predictable traffic
pattern for any network topology, such traffic patterns are not
seen in real-world networks. In addition, the resulting traffic is
computationally intensive to calculate, and thus prohibits very
large networks from being simulated.

Measuring network damage by focusing on the size of the
largest connected component is reasonable, as it promotes
maintenance of global network cohesion. Alternatives, such
as using the average size of connected components, would
instead focus on local neighborhood connectivity, allowing a
greater amount of network partitioning than is desirable for
something akin to the Internet, which derives its utility from
maximizing global connectivity.

The focus on scale-free networks is also justifiable, because
such a topology appears in a wide variety of empirically ob-
served networks, as a result of (a) the benefits arrived through
“preferential attachment,” [15] and (b) the economic consid-
erations concerning node and edge additions as the network
grows. A further benefit of studying such networks through
simulation is their remarkable degree of self-similarity. Even
though the Motter-Lai model of traffic hinders the simulation
of very large networks, we are nevertheless permitted to
maintain a high level of confidence in generalizing the results
from smaller networks to larger ones.

The initial approach at a defense to cascading failure by
the strategic and intentional removal of nodes in order to
remove excessive load from causing further node failures, has
the advantage of a low to non-existant incremental investment
cost, as it only requires the ability to perform a remote
shutdown of nodes. It has a strong disadvantage, however, in
that it is both difficult to provide early detection of cascade
failures and it requires knowledge and monitoring of the global
topology, which is unavailable in many real-world networks.

The difficulty of early detection makes the intentional re-
moval of nodes after an initial attack or random breakdown but
prior to the cascade an unrealistic damage control strategy for
many real-world networks. Some networks, though, have re-
balancing dynamics slow enough to permit such intervention.
For example, the power grid operates under predictable and
cyclic loads and is equipped with sensors and monitoring
stations which collect enough information, that overload of
the distribution network is preventable through the removal
of nodes in strategies such as rolling blackouts. For other
networks this is not possible, either because of the cost and
coordination overhead in monitoring or because the cascade
propagates as quickly as the network communication itself,
providing no window for intervention.

Motivated by these difficulties, we seek a proactive rather
than reactive solution, to prevent cascade rather than forestall
the resulting damage. The solution proposed by Schäfer,
Scholz, and Greiner [14] attempts such by simulating the
removal of nodes in order to calculate the resulting capacity
constraint that each node must meet in order for the net-
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work to survive. We consider this approach as completely
impractical for most real-world networks, because it requires
global knowledge of the topology and a time span between
network changes long enough to run such simulations. Though
it can yield valuable security information useful for resource
allocation during network construction, it is not appropriate for
mitigating failures when they occur in a dynamic environment.

III. IMPOSSIBILITY OF CASCADE DETECTION

A. The Global Problem

We notice that previous work in understanding the cascade
failure phenomenon has not resulted in the creation or sug-
gestion of any load-balancing algorithms with the goal of
minimizing the cascade, but which operate in a distributed
manner using only nearest-neighbor communication. We in-
tuitively believe that a distributed algorithm for preventing
cascade may not be possible. By examining what happens in
the neighborhood of a node during a cascade, we can identify
the following events, in a best-case scenario:

1. Self and neighbor nodes suffer a load increase.
2. One or more neighboring nodes overload and fail.
3. Self and neighbor nodes suffer another load increase, as

a result of the previous failure(s).

In this timeline, a load increase immediately precedes node
failures in the neighborhood. In real-world networks, this
event can happen simply as a result of fluctuating network
demand or traffic patterns, and is not, by itself, an indicator
of cascade. The failure of neighboring nodes, by itself, is also
not an adequate predictor of cascade failure. However, the
combination of these events, in a recorded history, can be used
as an indicator that a cascade is in progress. In fact, the more
sharply the load increases during phase (1) the more confident
we should be in such a prediction. It is important to note that
both load and capacity must be known by all neighbors in
order to make such a prediction, otherwise a node has no
way of distinguishing neighboring nodes which failed due to
overload from those that failed due to random breakdown. It
is important to observed that because load demands on real-
world networks fluctuate dynamically, these events above will
have the same appearance, independent of the observed node’s
location with respect to the node that triggered the cascade,
making the analysis applicable to all nodes in the network.

If nodes are restricted to nearest-neighbor knowledge, then
the assessment that a cascade is in progress can never be
made with absolute certainty. This is especially true if the
wavefront of the cascade advances through the network on the
same time-scale as the inter-node communication. However,
by monitoring and communicating the rate of load change,
it is possible to improve the assessment. This result corre-
sponds with the observation that cascade failure is a global
phenomenon, and knowledge of the local conditions will never
reveal quite enough information. However, even though a
distributed solution for completely preventing cascade failure
with certainty is impossible, it is still worth investigating
distributed load balancing strategies with heuristics that might
assist in limiting network damage.

Fig. 1. A subgraph of a typical node in a scale free network.

B. The Local Problem

Consider a local subgraph, as in Fig. 1, of a typical node
in a scale free network. It is clear that the unlabeled nodes
surrounding node A generate more traffic than they route,
satisfying a criterion for intentional removal given by Motter
[13]. Givnen Motter’s success with defensive mechanisms that
will selectively remove these leaf nodes from the network, we
ask: How are these nodes to receive the removal command in
a decentralized network?

In Motter’s simulations, node A will have been assigned
a capacity capable of handling all the traffic generated via
itself and its leaf nodes. This means that the only way in
which A becomes overloaded is when the traffic via the two
edges x and y, were to suddenly increase as a result of re-
routing brought on by node failures at least 2 hops away
from A. Under our restrictions, this means that none of the
nodes depicted in the cluster will receive warning in time to
selectively remove themselves. Unfortunately, because scale-
free networks display a large amount of self-similarity, most
of the local topologies will fall in this category, implying that
a decentralized solution will be very difficult to obtain, if it is
possible at all.

Even assuming that it is possible to detect and then give
advanced communication of a cascade failure, the only strategy
that succeeds in maximizing the number of connected nodes
within the largest remaining component, would be for this
cluster to participate in a outage-scheduling mechanism. That
is, nodes can participate in sharing the time spent in voluntary
removal. In the power grid, this strategy is already practiced
as a rolling-blackout. Our model requires that all the nodes
perform the same local computation, which results in the
prompt voluntary shutdown of all leaf-nodes connected to A,
if not A itself.

Any algorithm that attempts to solve this problem will have
to identify A as more important than any of the leaves, because
of its potential, using edges x and y, for joining two parts
of the global network. But it is precisely this potential that
makes node A vulnerable to automated re-routing of traffic.
If the leaf nodes are left online, then the capacity of A to
form a such a bridge is severely reduced, and it will likely
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fail due to overload. Yet we still observe that, subject to the
nearest-neighbor restriction, it is not possible to preserve A
by voluntarily removing the leaf nodes. For, if the cascade
propagates as fast as inter-node communication, there will
simply not be enough time to communicate the command.

IV. NETWORK CENTRALITY HEURISTICS

We formally define our network N , as an undirected graph
G = (V, E) of verticies V and edges E . Every node n ∈ V will
represent a communication device (hub, router, or substation)
on the network, while every edge e = (v, w) ∈ E represents
a direct line of communication between devices. A node w is
a neighbor of v if they share an edge. Every node v is also
equipped with memory for storing information regarding load
Lv , capacity Cv and a list of neighbors V(v). For convenience,
the degree κ(v) of node v is defined as the number of its
neighbors, |V(v)|.

A path p(s, t) from a source node s to a target node t is an
ordered k-tuple of nodes (v1, v2, ..., vk) such that (s, v1) ∈ E ,
(vk, t) ∈ E and (vi, vi+1) ∈ E for i = 1..k. The hop length
l(p(s, t)) of a path p is given by the number of edges on the
path, thus l(p(s, t)) = k + 1. The hop distance d(s, t) from
node s to node t is the minimum hop length of any path p(s, t),
with d(s, s) := 0 and d(s, t) :=∞ if s and t belong to separate
components of G. Because there may be more than one such
shortest path, the number of shortest paths is denoted by
σst, with σss := 1. The number of shortest paths passing
over node v is denoted σst(v).

Social network theorists have identified some common and
useful metrics, based on shortest paths, for identifying the
importance of a node v within a graph:

Closeness Centrality [16]

CC(v) =
1∑

t∈V
d(t, v)

(8)

Graph Centrality [17]

CG(v) =
1

max
t∈V

d(t, v)
(9)

Stress Centrality [18]

CS(v) =
∑
s∈V

∑
t∈V,
s 6=t

σst(v) (10)

Betweenness Centrality [19]

CB(v) =
∑
s∈V

∑
t∈V,
s 6=t

σst(v)
σst

(11)

Most pertinent to our discussion is the betweenness cen-
trality, which measures the expected routing service demands
of node v if every node was communicating with every
other simultaneously [20]. Using the algorithm developed by
Brandes [21] allows us a very fast implementation for each of
the chosen centrality metrics.
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Fig. 2. The degree distribution of nodes.

V. METHODOLOGY

We use Inet-3.0 to generate scale-free random test networks.
Despite the fact that this tool does not well represent the
Internet in terms of maximum clique size and clustering
coefficient, it still constructs realistic topologies with regard
to resilience, pair size within h hops, outdegree vs rank
power law, characteristic path length, average eccentricity and
distortion [22]. As an alternative means of generating network
topologies we considered Aldridge’s algorithm for generating
scale-free networks with preferential linking [23], but decided
in favor of Inet-3.0 because it has been explicitly engineered
to generate topologies resembling that of the Internet, and
therefore better represents networks assembled under real-
world economic constraints, providing networks qualitatively
more suitable for our analysis.

However, Inet-3.0 does have a tendency to create a few
nodes with unrealistic connectivity. So after generating net-
works of 5000 nodes, we removed the 3 nodes of highest
degree. By default 30% of nodes created by Inet-3.0 have
degree 1, so this removal process isolates many nodes, the
network is scanned and degree 0 nodes are removed before
simulation. The resulting networks have the degree distribution
as shown in Fig. 2, and range in size between 4378 and 4412
nodes.

Since we are primarily focused on load distribution and
intentional removal of nodes than in the routing of network
traffic, we initialize the network with a worst-case scenario
of load by having each node communicate in shortest-hop
fashion with every other node, splitting the traffic evenly if
multiple paths are available. This can be easily calculated
using the betweenness centrality algorithm by Brandes [24].
We consider this a reasonable distribution of load in the sense
that nodes which act as “hubs” will be initialized with more
load than “leaf” nodes at the network periphery. The load
will then be considered as if it were a resource demand on
that node. The resource allocation could be a result of data
allocated for a distributed hash table, or processes allocated in
a cloud. We investigate a few local-decision based strategies
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TABLE II
NUMBER OF NETWORKS THAT UNDERGO CASCADE CYCLES BEFORE

STABILIZATION.

Capacity Number of Cascade Cycles
α 2 3 4 5

0.0 10
0.1 3 4 3
0.2 7 2 1
0.3 10
0.4 4 6
0.5 5 5
0.6 3 7
0.7 5 5
0.8 4 4 2
0.9 6 4
1.0 7 3
1.1 7 3
1.2 8 2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
alpha

0.0

0.1

0.2

0.3

0.4

0.5

G

Fig. 3. The size of the largest connected component relative to the
initial network size vs. the network capacity, α, for networks without
a defensive mechanism. Error bars represent the min and max size of
the largest component across the 10 test networks.

for intentional removal in the event of a failure cascade.
After creating the network, it is initialized with loads based

on n2-communication traffic. Each node is then assigned a
capacity dependent on α as given by Eqn. 1. The node with
the highest load is considered to have been subject to a targeted
attack, and is removed from the network. This triggers a
cascade, which is simulated in stages by re-routing the n2-
communications, processing intentional removals, and failing
nodes that become overloaded. This proceeds until the network
stabilizes, as shown in Fig. 3. A profile of the number of
networks and cascade cycles that proceed before stabilization
is given in Table II.

VI. RESULTS

The results of triggering a cascade without any mechanism
for defense qualitatively match those of other researchers. We
see that by targeting the heaviest loaded node, a cascade
can be triggered that spreads throughout the network. The
cascade usually proceeds with only two or three cycles before
stabilizing, indicating the correctness of our assumption that

the cascades progress at a rate close to that of inter-node
communication.

We tested a few very simple decentralized heuristics for
the intentional removal defense that are based on localized
knowledge at some node n.

Defense 1. Shutdown if Ln <

∑
i∈V(n) Li

κ(i)
.

A node will remove itself if it carries a load
less than the average load of its neighbors.

Defense 2. Shutdown if any neighbors have failed and

Ln <

∑
i∈V(n) Li

κ(i)
.

A node will remove itself if it carries a load
less than the average load if its neighbors
and at least one of the neighbors has already
failed. Our model does not distinguish the
difference between voluntary removal and
overload, so the term failure applies to any
node that has transitioned to an inactive state.

Defense 3. Shutdown if more than 1/2 of neighbors have

failed and Ln <

∑
i∈V(n) Li

κ(i)
.

A node will remove itself only when most
of its neighbors have also failed, and the
condition of Strategy 1. applies.

Defense 4. Shutdown if
Cn − Ln
V(n)

<
∑

i∈V(n)

Ci − Li
|V(i)|

A node will remove itself if the remaining
capacity averaged over its neighbors is less
than their remaining capacity averaged over
their neighbors. We assume that each node
will broadcast this value to neigbors at each
network time-step, although the traffic that
would be generated in this manner is ignored,
and is not considered part of the model.

All of the defensive strategies performed much worse than
no defense at all, though they did reduce the number of net-
work cycles before stabilization. Strategies 2 and 3 performed
the same, suggesting that when any neighbors fail, a majority
of them do so, and both fared better than strategies 1 and 4,
indicating that shutting down only when neighbors have gone
offline will probably form a necessary part of any successful
strategy for maximizing the size of the largest connected
component. This observation is in correspondence with our
earlier time-line analysis on a typical local neighborhood.
Curiously, strategy 1, which was based on average load,
outperforms strategy 4, which was based on an averaged
remaining capacity.

Because all strategies performed performed so poorly, we
find that they are overzealous in the practice of voluntary
removal. In particular, strategy 1. will fail all nodes with load
less than average, even if no cascade is occuring. This strategy,
will in fact cause a cascade of voluntary removals. As the
lighter loaded nodes drop out of the network, the average
load is also brought down, which may cause further voluntary



8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
alpha

0.000

0.005

0.010

0.015

0.020

0.025

G

defense_1
defense_2
defense_3
defense_4

Fig. 4. The size of the largest connected component relative to the
initial network size vs. the network capacity, α, for networks with
defensive mechanisms.

removals. This demonstrates a poignant danger with regard
to our goal of developing a decentralized intentional removal
strategy: the strategy itself might induce a cascade. We, don’t
as yet, know of a self-correcting strategy that would prevent
such an occurance. But we suspect that it would have to be
based on self-stabilizing techniques discussed by Dijkstra [25].
It may well be that congestion aware routing strategies and
rate-based load balancing are the most viable options, as they
both encourage more homogeneous load patterns, which is
already known to partially mitigate the effects of heterogenous
linkage resposible for cascading failure.

VII. FUTURE WORK

For the purposes of easing implementation, our model made
a few assumptions that should undergo reconsideration:

Omniscient Routing. By using the betweenness centrality
measure, we assumed that each node was capable of om-
nisciently routing traffic along a shortest-hop path. A more
realistic model would use discrete event simulation to more
accurately depict actual routing algorithms. For the purposes
of investigating the effects of routing on the cascade phe-
nomenon, it would be useful to simulate routing or load-
balancing algorithms that are congestion-aware [26], gradient-
based [27], or rate-based.
n2-based Load. Simulating traffic in this manner, though

simple to calculate, should be considered as overly pessimistic.
More realistic load patterns should be simulated. To the best
of our knowledge, proposed traffic generators such as Swing
[28] and Harpoon [29] are focused on the accurate simulation
of TCP, UDP and protocol-specific simulations. As such they
are not really appropriate for the study of cascade failure,
and they possess too steep a cost for simulations such as
those considered here. Better statistical models describing load
distribution in multi-cpu systems would also allow us to forgo
the assumption that traffic is equivalent to load.

Local Knowledge. Our model severely resticts the decisions
at each node to be functions of nearest-neighbor properties

only. Since most real-world networks actually have long
up-times between global outages, it is entirely possible for
nodes to obtain an idea of global parameters via distributed
computations. Each of the centrality statistics mentioned in
this paper are now possible to calculate via nearest-neighbor
communication [30], which enables each node in the network
to have a rough idea of its various topological properties. The
nature of these algorithms naturally permit a node to estimate
the topology of its neighbors without any communication
overhead apart that of the computation protocol itself. Any
future work in this area should incorporate such techniques
into both routing protocols with the goal of homogenizing
traffic and distributing load, as well as heuristics to detect
cascades in progress, or predict that one is in danger of
happening. In particular, a distributed computation of the
single node removal contingency analysis mentioned in the
proactive defense approach [14] would allow nodes critical
to the network infrastructure to warn their operators of the
situation, allowing better allocation of network infrastructure.

We would like to mention that our focus was on maximizing
the size of the largest connected component rather than on
minimizing the number of components into which a network
is fractured. Future development could focus on maximizing
a heuristic such as

β|N |+ (1− β)|Nmax|, (12)

where |N | is the number of components and |Nmax| is the size
of the largest component, and β is a tuning paramater spec-
ifying the relative importance betwen number of components
and the size of the largest component.

We also did not have time to investigate wether a calculation
utilizing min-cut would be of any use. Presumably, the failure
of any nodes with edges along a min-cut would be prone to
generating a greater impact on the network load redistribution
than the failure of nodes along the network periphery. A brief
literature search did not reveal any decentralized algorithms for
discovering min-cuts within the network. We think that if any
such algorithm can be developed it would be of great benefit.
Even if the discovery process took many network cycles, the
mean time between cascades is long enough that it is safe to
assume that each node knows whether it lies adjacent to a min-
cut prior to entering a cascade. We think that this knowledge
will greatly aid the awareness needed during the intentional
removal process.

Many real-world networks do not cascade quite as quickly
as inter-node communication, even though there is slight lead
time that was not considered in our model. This situation
corresponds to the percolation of vulnerable nodes throughout
the network, as observed in [7], and strongly suggests that
rate-estimation strategies, already known to be beneficial for
load balancing and job scheduling [31], should fare much
better than the simple reactive, average value based strategies
considered here.

Unfortunately, the events which can trigger a cascade are
a priori indistinguishable from events which do not trigger
cascades [7]. This makes a global knowledge based solution
extremely difficult, and might render a decentralized solution
to the problem nigh impossible. Nevertheless, because we
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often lack global knowledge of real-world network topology,
and the infrastructure is almost never under a single controlling
authority, we think that decentralized solutions are urgently
needed.
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